

Associazione Studenti e Professori di Medicina uniti Per

BIOLOGIA

GIORNATE TEMATICHE PER MEDICINA E PROFESSIÓNI SANITARIE

Scansionate il QR-Code per dirci quali argomenti preferireste affrontassimo le prossime volte

CONTATTI:

Giacomo – Giacomostudentieprof@gmail.com Anna– Annadefaveri3@gmail.com

1.VIRUS: CARATTERISTICHE GENERALI

MATERIALE GENETICO

- IL MATERIALE GENETICO può essere:
- a DNA o RNA (MAI ENTRAMBI!!!)
- A singolo (ss) o a doppio filamento (ds)
- Può essere a polarità positiva (+) o negativa (-)
- Alcuni virus hanno un genoma a RNA segmentato
- FORMA: lineare o circolare
- LUNGHEZZA: dai pochi kbp a centinaia di kbp.

FUNZIONI PRINCIPALI:

- Contiene le informazioni per sintesi proteine virali
- Dirige la replicazione all'interno della cellula ospite
- Determina il ciclo replicativo

- Se la polarità è + : funziona come mRNA
- Se la polarità è : necessità di trascrizione da RNA polimerasi virale.

I virus vengono classificati anche in base al tipo di acido nucleico > Classificazione di Baltimore

CAPSIDE VIRALE

Il capside è il rivestimento proteico che racchiude e protegge il genoma virale.

COMPOSIZIONE:

- Capsomeri: unità proteiche ripetute
- Può includere proteine con funzione di adesione all'ospite

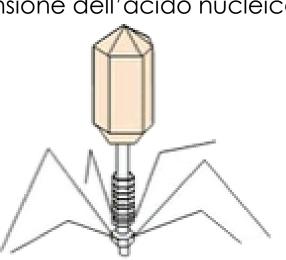
FUNZIONI:

- Protezione acido nucleico da fattori esterni.
- Mediazione riconoscimento e attacco di recettori cellulari.
- Favorisce l'ingresso del virus nella cellula ospite
- Determina il nucleocapside.

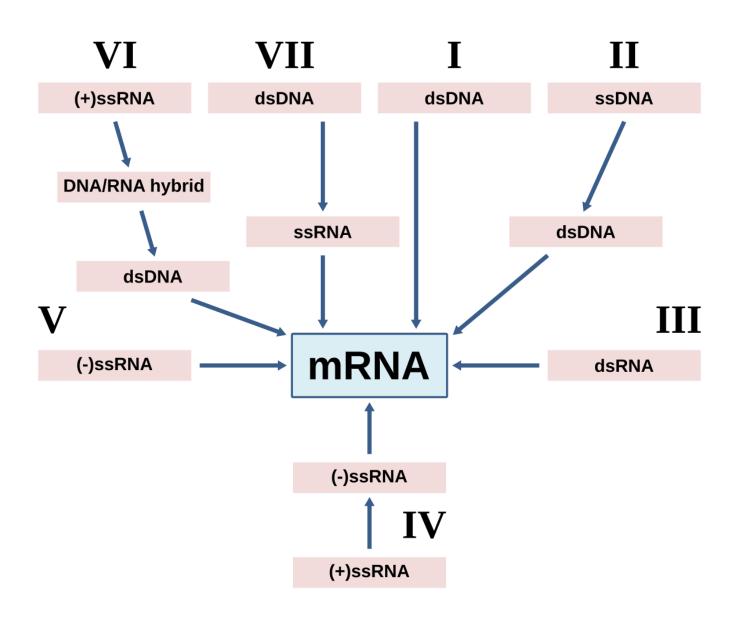
IMPLICAZIONI CLINICHE:

- VIRUS NUDI: solo capside: più resistenti a detergenti, acidi e calore.
- VIRUS ENVELOPED: capside + involucro: più sensibili ma spesso più adattabili all'ospite.

NUCLEOCAPSIDE: è il complesso formato da acido nucleico e capside; protegge e conferisce forma al virus e contiene le strutture necessarie a infezione della cellula ospite.

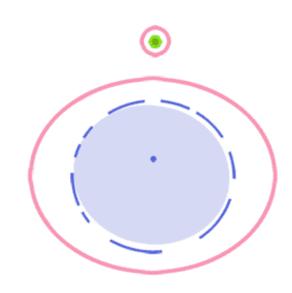

TIPI DI SIMMETRIA DEL CAPSIDE

Il capside presenta delle simmetrie particolari:


- ICOSAEDRICA → Tipica di virus a DNA.
- ELICOIDALE → comune nei virus a RNA.
- COMPLESSA → forme particolari.

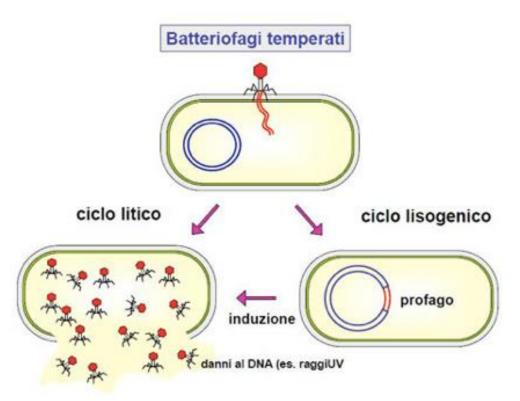
Le simmetrie differenti conferiscono al virus un compromesso tra la protezione del genoma virale, efficienza nell'assemblaggio e adattamento al tipo/dimensione dell'acido nucleico.

CICLO LITICO E LISOGENICO DI UN VIRUS BATTERICO



- 1. CICLO LITICO: Il fago inietta il DNA nella cellula batterica.
- IL DNA VIRALE rimane separato da quello dell'ospite
- Viene avviata la replicazione immediata del genoma virale e produzione di proteine del capside.
- I nuovi virioni vengono assemblati.
- LA CELLULA VA INCONTRO A LISI RILASCIANDO NUMEROSI FAGI MATURI.

RISULTATO


MORTE del batterio e conseguente diffusione del virus.

Attenzione: ci sono eccezioni per cui il ciclo litico può avvenire senza lisi cellulare (virus con pericapside):le particelle virali fuoriescono dalla cellula per GEMMAZIONE:

- 2. <u>CICLO LISOGENO</u>: Il DNA virale iniettato si integra nel cromosoma batterico.
- La produzione di nuovi virioni non è immediata.
- Il genoma virale si replica insieme a quello dell'ospite durante le divisioni cellulari.
- Il fago resta silente in forma integrata senza danneggiare il batterio.
- In certe condizioni il profago può indursi ed entrare nel ciclo litico: si ha una convivenza temporanea tra fago e batterio con possibile passaggio al litico.

CICLO DI UN VIRUS ANIMALE E RETROVIRUS

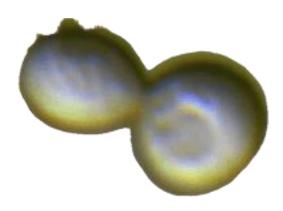
<u>CICLO DI UN VIRUS ANIMALE:</u> In questo caso il ciclo è un po' più complesso dei batteriofagi. Vediamo le fasi:

- 1. ATTACCO (ADSORBIMENTO) → Tramite riconoscimento recettori specifici sulla membrana della cellula ospite. !!!TROPISMO!!!
- 2. INGRESSO (PENETRAZIONE) → Può avvenire tramite endocitosi o fusione diretta.
- 3. DECAPSIDAZIONE → Il capside viene smontato rilasciando il genoma virale nel citoplasma o nel nucleo a seconda del tipo di virus
- 4. REPLICAZIONE DEL GENOMA → La modalità dipende dal tipo di virus
- 5. SINTESI DELLE PROTEINE VIRALI → Viene usata la macchina proteica dell'ospite
- 6. ASSEMBLAGGIO → Si formano virioni maturi
- 7. RILASCIO → Possono uscire tramite gemmazione o lisi della cellula.

<u>CICLO DI UN RETROVIRUS:</u> i retrovirus sono virus a RNA ss + che trascrivono il loro RNA in DNA integrandolo nel genoma della cellula ospite. Il loro ciclo è leggermente differente:

- 1. ATTACCO
- 2. INGRESSO
- 3. DECAPSIDAZIONE → II capside si smonta liberando RNA virale e trascrittasi inversa, integrasi e proteasi.
- TRASCRIZIONE INVERSA → RNA convertito in DNA complementare a doppio filamento: cDNA.
- 5. INTEGRAZIONE → cDNA entra nel nucleo e l'integrasi lo inserisce nel genoma della cellula ospite diventando un PROVIRUS: PUO' RESTARE LATENTE PER MOLTO TEMPO.
- 6. TRASCRIZIONE E TRADUZIONE → Il provirus utilizza il macchinario cellulare per produrre mRNA virale e RNA genomico virale
- 7. ASSEMBLAGGIO
- 8. GEMMAZIONE E MATURAZIONE > fuoriesce tramite gemmazione acquisendo envelope dalla membrana: la proteasi virale processa le proteine del capside rendendo i virioni maturi e infettivi.

Ma come entra ed esce un vitus da una cellula animale?

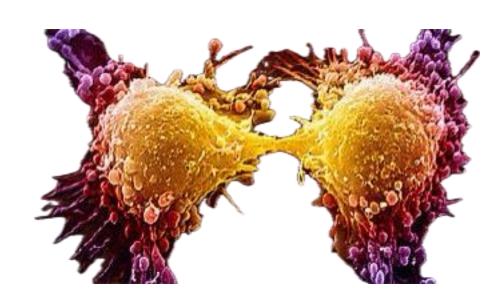

Queste modalità dipendono da presenza o assenza dell'envelope virale.

#ENTRATA → I modi sono 2:

- 1. <u>Fusione diretta</u> → virus con envelope: esso si fonde con membrana plasmatica.
- 2. <u>Endocitosi mediata da recettore</u> → legano specifici recettori sulla membrana: la cellule ingloba il virus in vescicola endocitica.

#USCITA → Anche qui le modalità sono 2:

- 1. <u>Gemmazione</u> → Tipica dei virus con envelope.
- 2. <u>Lisi cellulsre</u> → Tipica dei non enveloped.



<u>VIRUS ONCOGENI A RNA E DNA:</u> sono dei virus che hanno la capacità di indurre la trasformazione neoplastica delle cellule TUMORALI. Possono avere genoma a DNA o RNA:

- > DNA: il DNA virale spesso si integra nell'ospite e codifica proteine oncoproteiche.
- > RNA: a singolo filamento positivo: quasi tutti retrovirus. L'RNA viene trascritto in DNA tramite trascrittasi inversa e il DNA si integra in quello dell'ospite.

2. CENNI SULLA CELLULA PROCARIOTICA

GENERALITÀ:

- ❖ Le cellule procariotiche sono cellule senza un nucleo vero e proprio e senza organelli delimitati da membrane.
- ❖ Batteri e archea
- Dimensioni esigue:1-5 micrometri.

STRUTTURA:

- ♦ Membrana plasmatica → doppio strato lipidico con proteine. Alcuni batteri hanno mesosomi.
- ❖ Parete cellulare → Protegge e mantiene la forma: peptidoglicano nei batteri (assente in archea).
- ❖ Citoplasma → enzimi, ribosomi (70S), riserve nutritive.
- ♦ Nucleoide → Contiene il DNA circolare e NON è separato da membrane.
- ❖ Ribosomi → 70S, sintetizzano proteine.
- ❖ Flagelli e pili/fimbrie → in alcuni batteri. Movimento e adesione a superfici o trasferimento di DNA.
- ❖ Capsula → In alcuni batteri. Protegge da fagocitosi e favorisce adesione.

CHE DIFFERENZE CI SONO TRA GRAM+ E GRAM-?

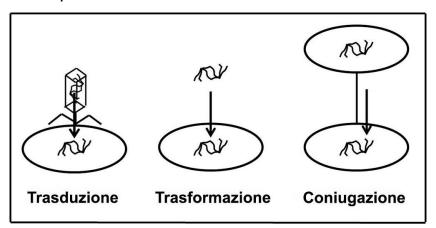
GRAM +	GRAM-
PARETE CELLULARE SPESSA- PEPTIDOGLICANO	PARETE CELLULARE SOTTILE
ACIDI TEICOICI E LIPOTEICOICI	HANNO MEMBRANA ESTERNA ALLA PARETE CONTENENTE LPS E PORINE
MEMBRANA CITOPLASMATICA UNICA SOTTO LA PARETE	SPAZIO PERIPLASMATICO
TRATTENGONO IL VIOLETTO DI CRISTALLO:APPAIONO VIOLA/BLU	NON TRATTENGONO IL VIOLETTO DI CRISTALLO E SI COLORANO APPARENDO ROSA/ROSSI
SENSIBILI A PENICILLINE E ANTIBIOTICI CHE AGISCONO SUL PEPTIDOGLICANO	PIU' RESISTENTI AGLI ANTIBIOTICI
ES:STAPHYLOCOCCUS,STREPTOCOCCUS	ES:E.COLI,SALMONELLA

EUBATTERI:

- Sono i procariotici classici, vivono in ambienti comuni.
- Parete con peptidoglicano
- ❖ Membrana con fosfolipidi e legami estere
- DNA circolare organizzato in nucleoide
- ❖ Ribosomi 70S
- Esempi: E.Coli, Staphylococcus aureus, Streptococcus, Bacilus, Salmonella.

ARCHEOBATTERI:

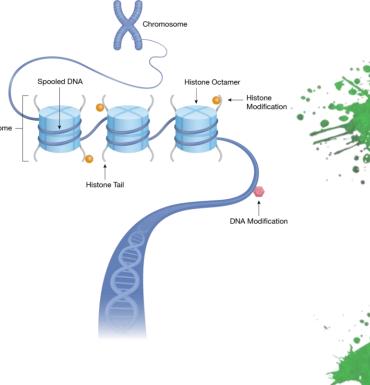
- Geneticamente diversi dai batteri: DNA e RNA polimerasi simili a quelle eucariotiche.
- ❖ Parete priva di peptidoglicano → pseudopeptidoglicano o altre sostanze
- Membrana plasmatica con lipidi con legami etere.
- Vivono in ambienti estremi.
- Esempi: Methanobacterium.



MECCANISMI DI TRASFERIMENTO GENICO ORIZZONTALE:

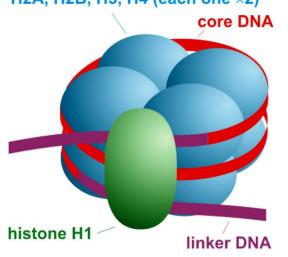
- Sono meccanismi con cui i batteri si scambiano materiale genetico INDIPENDENTEMENTE DALLA RIPRODUZIONE.I principali sono 4:
- I. <u>TRASFORMAZIONE</u> → Acquisizione DNA libero dall'ambiente. Il DNA estraneo può integrarsi nel cromosoma batterico.

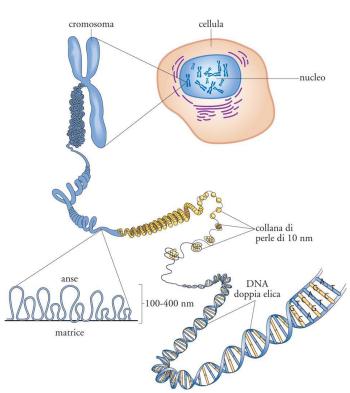
BATTERIO COMPETENTE: batterio capace di assorbire DNA


- I. <u>CONIUGAZIONE</u> → Da batterio donatore a batterio ricevente tramite Pilo sessuale.
- II. <u>TRASDUZIONE</u> → Trasferimento tramite un batteriofago. Può essere generalizzata o specializzata.
- III. TRASPOSIZIONE → Tramite trasposoni.

I NUCLEOSOMI:

- ❖ È l'unità fondamentale della cromatina.
- ❖ Ottamero di istoni con attorno circa 147 paia di basi di DNA.
- ❖ Funzione: compattare il DNA e REGOLARE l'accessibilità ai geni.


E' formato da un ottamero istonico: 2 H2A,2 H2B,2 H3,2 H4.


Attorno: DNA avvolto in 1,65 giri.

I nucleosomi sono collegati da DNA linker.

H1 SI LEGA AL LINKER.

octamer of core histones: H2A, H2B, H3, H4 (each one ×2)

EUCROMATINA:

- Forma di cromatina meno condensata
- ❖ Ricca di geni ATTIVI.
- ❖ Accessibile all'apparato trascrizionale.
- Associata spesso a istoni acetilati.
- Funzione: espressione genica

ETEROCROMATINA:

- Forma di cromatina altamente condensata
- ❖ Trascrizionalmente inattiva
- Aspetto scuro al microscopio elettronico
- DNA meno accessibile, associata a istoni metilati.
- ❖ Può essere costitutiva o facoltativa.

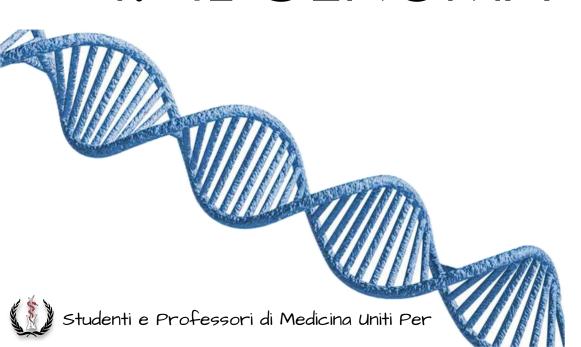
METILAZIONE DEL DNA:

- meccanismo epigenetico. Avviene tramite DNA METIL TRANSFERASI (DNMT).
- La metilazione delle regioni regolatorie riduce l'espressione genica.
- La metilazione degli istoni può avvenire su lisina o arginina.
- Importante per sviluppo embrionale, citotipi, malattie.

<u>RIMODELLAMENTO DELLA CROMATINA:</u> Permette il passaggio da eterocromatina a eucromatina.

Questo avviene tramite:

- ✓ Modifiche post-traduzionali degli istoni: avvengono su code degli istoni, H3 E 4 in particolare. Abbiamo:
 - i. Acetilazione \rightarrow lisina. Apre la cromatina e attiva la trascrizione.
 - ii. Deacetilazione -> Condensa la cromatina e inibisce la trascrizione.
 - iii. Metilazione → Lisina e arginina: può attivare e reprimere.
 - iv. Fosforilazione → regolazione aggiuntiva.
- ✓ Rimodellamento ATP-DIPENDENTE: complessi proteici che usano ATP per far scivolare i nucleosomi, rimuovere/sostituire istoni, rendere più accessibile il DNA.
- ✓ Incorporazione varianti istoniche: modificano la stabilità cromatinica.
- ✓ Metilazione DNA:-CH3 sulle citochine.



Cosa sono le condensine?

- Sono complessi proteici SMC che compattano i cromosomi durante mitosi e meiosi.
- ❖ Hanno più subunità (SMC2-4).
- Compattano, organizzano le loops, stabilizzano i cromosomi, hanno ruolo anche nella riparazione del DNA.

4. IL GENOMA UMANO

CARATTERISTICHE GENERALI:

- Circa 3,2 miliardi di paia di basi
- ❖ 46 cromosomi
- ❖ 20k geni circa che codificano per proteine → 1-2% del genoma totale.
- ❖ 98% del genoma non è codificante.

Ma cosa comprende la porzione non codificante del DNA?

- □Sequenze regolatorie
- □ncRNA (RNA non codificanti)
- □DNA ripetitivo:
 - i.Sequenze satelliti
 - ii.Sequenze moderatamente ripetute
- □Pseudogeni.

Le GLOBINE si legano all'O₂ grazie a EME.I tipi sono EMOGLOBINA e MIOGLOBINA. Abbiamo cluster **alfa e beta.**

Passiamo all'organizzazione delle sequenze del genoma umano:

SEQUENZE A COPIA SINGOLA:

- Presenti una sola volta nel genoma
- ❖ 50-60% del genoma umano
- ❖ Geni codificanti proteine (esoni + introni) e sequenze regolatorie
- Danno specificità al genoma.

FAMIGLIE GENICHE:

- Geni simili tra loro per sequenza e funzione. Possono essere:
 - i. FAMIGLIE CLASSICHE → geni molto simili e con funzione correlata.
 ES: GLOBINE.
 - ii. SUPERFAMIGLIE → geni con omologie parziali e funzioni diverse ma correlate.

SEQUENZE RIPETUTE:

- ❖ 40-50% del genoma umano.
- Sono disperse: in modo sparso nel genoma
- Derivano da elementi trasponibili
- ❖ LINEs, SINEs, retrotrasposoni LTR e DNA trasposoni.

SEQUENZE RIPETUTE IN TANDEM

- Ripetizioni di brevi sequenze poste una accanto all'altra.
- Esistono vari tipi:
 - I. SATELLITI → nei centromeri.
 - II. MINISATELLITI → usate nei DNA fingerprinting.
 - III. MICROSATELLITI → molto variabili utili in genetica forense.
- Funzioni: stabilità cromosomica e variabilità genetica tra individui.

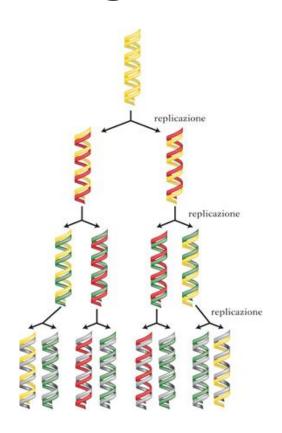
QUALI SONO GLI ELEMENTI MOBILI DEL DNA?

Gli elementi mobili sono delle sequenze di DNA in grado di SPOSTARSI DA UNA POSIZIONE ALL'ALTRA all'interno del genoma.

Possono modificare geni, regolare l'espressione e contribuire all'evoluzione genomica.

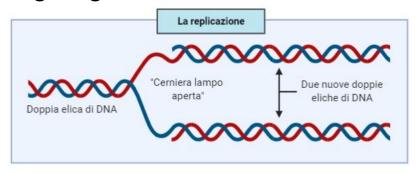
Riconosciamo i tipi principali:

- ❖ TRASPOSONI → a DNA, si spostano come DNA senza passare a RNA. Codificano trasposasi (taglia e incolla il trasposone). Sia in batteri che eucarioti.
- ❖ RETROTRASPOSONI → Trascritti in RNA poi retrotrascritti in DNA tramite trascrittasi inversa e inseriti in un nuovo sito.

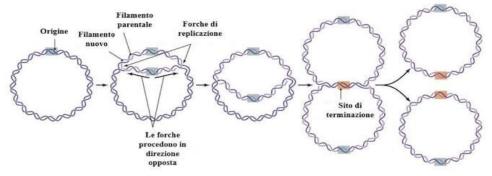

Tipi principali: LINEs, SINEs, LTR retrotrasposoni.

A cosa servono gli elementi mobili? Importanti per variabilità genetica, regolazione genica, evoluzione genomica.

Ciononostante hanno anche rischi: inserzioni che possono causare malattie.


5. LA REPLICAZIONE DEL DNA

Cos'è la replicazione?


- Processo biologico fondamentale che duplica il DNA di una cellula, creando due copie identiche, assicurando che ogni cellula figlia riceva una copia completa del patrimonio genetico durante la divisione cellulare
- È un processo semiconservativo, ovvero ogni molecola figlia è composta da un filamento parentale (vecchio) e un filamento neosintetizzato (nuovo).
- Avviene in 3 fasi principali: inizio, allungamento e fine, e coinvolge numerosi enzimi
- Importanza della replicazione per la vita cellulare: questo processo è fondamentale per la trasmissione dell'informazione genetica, permettendo così la crescita, la riproduzione e il mantenimento dell'integrità genetica degli organismi viventi.

La replicazione nei procarioti

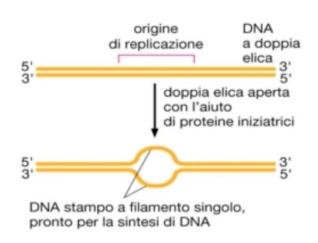
Nei procarioti, la replicazione del DNA avviene in un'unica origine di replicazione e segue un processo relativamente semplice e rapido, con l'utilizzo di un solo tipo di DNA polimerasi e con una maggiore velocità rispetto agli eucarioti.

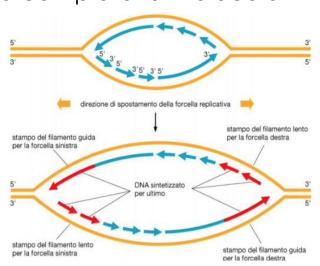
La replicazione negli eucarioti

Negli eucarioti, la replicazione si svolge in più origini di replicazione lungo i cromosomi, con un numero maggiore di enzimi e proteine coinvolte, per garantire la coesistenza della complessità strutturale e la regolazione del ciclo cellulare.

Confronto tra i due processi:

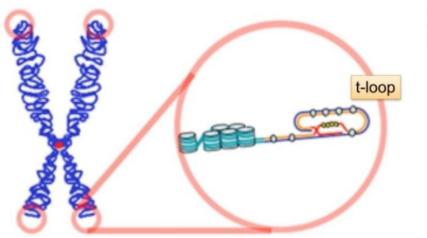
Nonostante entrambi i tipi di cellule seguano il meccanismo semiconservativo, le differenze nel numero di origini di replicazione, nella lunghezza dei filamenti e nella complessità delle proteine associate rendono i processi distinti e adattati ai loro rispettivi contesti cellulari.

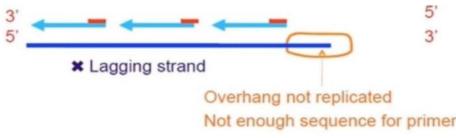

Enzimi coinvolti nella replicazione del DNA


- <u>Elicasi</u> → separa i filamenti rompendo i legami a idrogeno
- <u>Topoisomerasi</u> → previene superavvolgimenti durante lo srotolamento
- <u>Primasi</u> → sintetizza primer di RNA per l'avvio della sintesi
- DNA polimerasi → allunga i filamenti (5'→ 3') e corregge errori (attività di proofreading)
- <u>Esonucleasi</u> → rimuove i primer di RNA
- <u>Ligasi</u> → unisce i frammenti di DNA con legami fosfodiesterici

Meccanismo di replicazione (fasi):

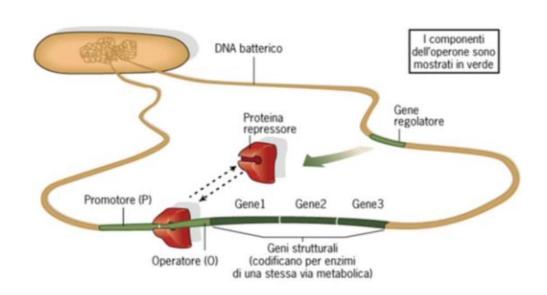
- 1. <u>Inizio</u>: riconoscimento delle origini di replicazione (ORI) e apertura della doppia elica (complesso di inizio)
- 2. Srotolamento: azione dell'elicasi e topoisomerasi
- 3. Innesco: sintesi di primer da parte della primasi
- 4. <u>Allungamento</u>: la DNA polimerasi copia il filamento guida (continuo) e il filamento lento (discontinuo, creando i frammenti di Okazaki)
- 5. Maturazione: rimozione dei primer di RNA e sostituzione con DNA
- 6. <u>Terminazione</u>: DNA ligasi salda i frammenti e completa la molecola




Telomeri, Telomerasi e Senescenza Replicativa

• <u>Telomeri</u>: sequenze ripetitive alle estremità dei cromosomi che proteggono il DNA da degradazione e fusioni.

Problema della replicazione terminale: ad ogni divisione i telomeri si accorciano → limite di Hayflick (40–60 divisioni).


- <u>Telomerasi</u>: enzima che allunga i telomeri usando un RNA interno come stampo; è attivo in cellule germinali, stem cells e in molte cellule tumorali.
- <u>Senescenza replicativa</u>: accorciamento critico dei telomeri → arresto permanente del ciclo cellulare, meccanismo di protezione contro la proliferazione incontrollata.

6. LA TRASCRIZIONE PROCARIOTI

La **trascrizione** è il processo biologico con cui l'informazione genetica del DNA viene copiata in una molecola di mRNA, che agirà come un messaggero per la sintesi proteica.

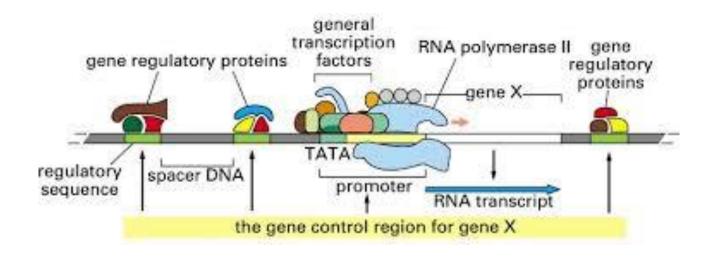
DNA →trascrizione→ mRNA

Nei procarioti, la trascrizione è essenziale per la regolazione genica e per la sintesi di proteine necessarie per l'adattamento e la sopravvivenza in ambienti variabili.

L'operone Lac:

È un sistema di regolazione genica nei batteri che controlla l'utilizzo del lattosio, fungendo da modello classico per lo studio della regolazione genica nei procarioti.

è costituito da:


- un gene regolatore;
- tre geni strutturali, codificanti per gli enzimi importanti per la via degradativa del lattosio;
- un promotore, al cui interno vi è un operatore specificatamente riconosciuto da una proteina repressore.

La presenza del lattosio è il fattore determinante per la trascrizione degli enzimi che lo degradano

7. LA TRASCRIZIONE NEGLI EUCARIOTI

Fattori di trascrizione

Generali


- Formano un complesso proteico necessario per il riconoscimento del promotore e l'avvio della trascrizione.
- Si legano a elementi come la TATA box.
- Consentono il corretto posizionamento dell'RNA polimerasi Il sul DNA.

Specifici

- Si legano a sequenze regolatorie specifiche
- Dunque sono i promotori, gli enhancer e i silencer
- Esempio: recettori degli ormoni steroidei
 - Si attivano legandosi all'ormone
 - Interagiscono con DNA in modo specifico → modulano la trascrizione di geni target

RNA polimerasi	Trascrive	Prodotti principali
RNA Pol I	rRNA (eccetto 5S)	rRNA 28S, 5.8S e 18S
RNA Pol II	mRNA, snRNA, miRNA	mRNA (codificante), snRNA, miRNA
RNA Pol III	tRNA, rRNA 5S, altri piccoli RNA	tRNA, rRNA 5S, snRNA U6

Fasi della trascrizione negli eucarioti

1. Inizio

- I fattori di trascrizione generali riconoscono e legano il promotore
- Viene reclutata l'RNA polimerasi II e TBP → formazione del complesso di pre-inizio
- Separazione dei filamenti di DNA, grazie all'attività elicasica di alcuni fattori, come TFIIH

2. Elongazione o allungamento

- La RNA polimerasi sintetizza il filamento di RNA aggiungendo NTP in direzione $5' \rightarrow 3'$
- L'allungamento procede grazie a fattori di allungamento che mantengono l'enzima legato al DNA e guidano il processo.

3. Terminazione

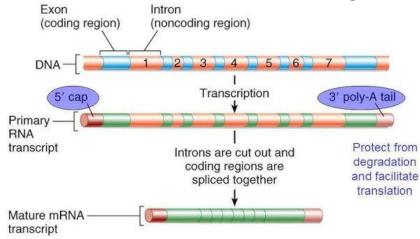
- 1. Il segnale di terminazione viene riconosciuto dall'RNA polimerasi Il
- 2. L'mRNA immaturo è pronto per maturazione

8. MATURAZIONE DEGLI RNA

È un processo post-trascrizionale che avviene nelle cellule eucariotiche.

pre-mRNA → mRNA maturo

Sarà poi l'mRNA maturo ad essere tradotto in proteina.


3 passaggi fondamentali:

- Capping
- Poliadenilazione
- Splicing

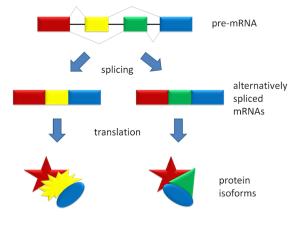
Le prime due hanno funzione di trasporto e di protezione dell'mRNA

- 1. Capping: aggiunta di un «cap», ovvero una 7-metilguanosina all'estremità 5'. Inizia già durante la trascrizione e serve a:
 - Protezione da esonucleasi
 - Riconoscimento per l'inizio della traduzione
 - Esportazione dal nucleo
- 2. Poliadenilazione: aggiunta di una coda di poliA (≈200) all'estremità 3' al termine della trascrizione. Serve a:
 - Stabilizzare l'RNA messaggero
 - L'esportazione nucleare
 - Determinare una traduzione efficiente
- 3. Splicing: rimozione degli introni e unione degli esoni, mediato dallo spliceosoma (complesso di proteine + snRNP) che riconosce le sequenze consenso e catalizza la reazione di taglio e giunzione

Lo splicing alternativo

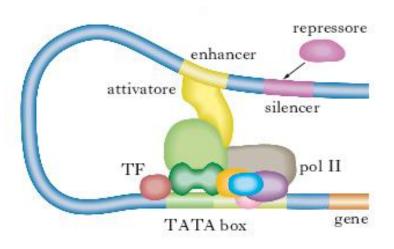
È un processo biologico che permette a un singolo gene di produrre diverse molecole di mRNA e, di conseguenza, più diverse isoforme delle proteine.

Avviene durante la maturazione del pre-mRNA, dove le regioni codificanti (esoni) possono essere incluse o escluse dal mRNA finale in modi differenti, portando a un aumento della complessità proteica senza aumentare il numero dei geni nel genoma.


È importante perché:

Aumenta la diversità proteica senza aumentare il numero di geni → regolazione genica più fine.

• È regolato da proteine specifiche (fattori di splicing).


Errori nello splicing alternativo possono portare a patologie (es. tumori o

malattie genetiche).

9. CONTROLLO DELL'ESPRESSIONE GENICA NEGLI EUCARIOTI

Trascrizionale

- Regolazione della sintesi di mRNA a partire dal DNA.
- Coinvolge fattori di trascrizione, enhancer/silencer, modifiche della cromatina (acetilazione, metilazione che alterano la condensazione del DNA).

Post-trascrizionale

- Controllo dopo la trascrizione ma prima della traduzione, anche grazie alla presenza di introni.
- Include:
 - Splicing alternativo → diversi mRNA da uno stesso gene
 - Editing dell'RNA → modifica nucleotidica dell'mRNA
 - Capping e poliadenilazione → stabilità e trasporto dell'mRNA
 - Degradazione dell'mRNA \rightarrow controllo della quantità disponibile per la traduzione

Traduzionale

- Regolazione della sintesi proteica a partire dall'mRNA.
- Include:
 - Efficienza di legame del ribosoma all'mRNA
 - Disponibilità dei fattori di traduzione
 - MicroRNA e siRNA → inibiscono la traduzione

Post-traduzionale

- Modifiche dopo la sintesi proteica, che ne influenzano attività, stabilità e localizzazione.
- Include:
 - Fosforilazione, metilazione, acetilazione
 - Tag ubiquitina → degradazione proteica
 - Formazione di complessi proteici o trasporto intracellulare

